Bootstrapping a change-point Cox model for survival data
نویسندگان
چکیده
منابع مشابه
Modeling Survival Data: Extending the Cox Model
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...
متن کاملDynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملBootstrapping confidence intervals for the change-point of time series
We study an AMOC time series model with an abrupt change in the mean and dependent errors that fulfill certain mixing conditions. We obtain confidence intervals for the unknown change-point via bootstrapping methods. Precisely we use a block bootstrap of the estimated centered error sequence. Then we reconstruct a sequence with a change in the mean using the same estimators as before. The diffe...
متن کاملBootstrapping Median Survival with Recurrent Event Data
In this paper, several resampling schemes to estimate the sampling distributions of median estimators of the inter-event time of a recurrent event are introduced and studied through simulations. Two types of recurrent event models are considered: first is a model where the inter-event times are independent and identically distributed, and second is a model where the inter-event times are associ...
متن کاملA mixture Cox-Logistic model for feature selection from survival and classification data
This paper presents an original approach for jointly fitting survival times and classifying samples into subgroups. The Coxlogit model is a generalized linear model with a common set of selected features for both tasks. Survival times and class labels are here assumed to be conditioned by a common risk score which depends on those features. Learning is then naturally expressed as maximizing the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2014
ISSN: 1935-7524
DOI: 10.1214/14-ejs927